Stability of Orthogonally Additive-Quadratic Functional Equation in Multi-Banach Spaces
نویسندگان
چکیده
منابع مشابه
Approximate mixed additive and quadratic functional in 2-Banach spaces
In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملStability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces
In this article, we prove the generalized Hyers–Ulam stability of the following Cauchy additive functional equation
متن کاملStability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces
and Applied Analysis 3 for some natural number n0. Moreover, if the second alternative holds, then i the sequence {Jnx} is convergent to a fixed point y∗ of J ; ii y∗ is the unique fixed point of J in the set Y : {y ∈ X | d J0x, y < ∞} and d y, y∗ ≤ 1/ 1 − L d y, Jy , for all , x, y ∈ Y . Following 30, 31 , we recall some basic facts concerning multi-normed spaces and some preliminary results. ...
متن کاملstability of generalized qca-functional equation in p-banach spaces
in this paper, we investigate the generalizedhyers-ulam-rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{z}-{0,pm1}$) in $p-$banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Mathematica
سال: 2017
ISSN: 2456-8686
DOI: 10.26524/cm4